2024 Utility Technology Conference

Keep Calm and Carry On... Being THM Compliant

March 7, 2024
Paul Brister, Ph.D.

Foundation Instruments, Inc.

- Formed as a high-tech spinout from the University of Memphis in 2009
- Flagships products include analyzers for online, on-site and real-time monitoring of DBPs
- Leverage deep knowledge of drinking water chemistry and instrumentation to help utilities optimize and implement process improvements
- Focus on "making hard measurements easy"
- Diverse technical team including Analytical Chemists, Mechanical, Electrical, Software, and Computer Engineers
- Unique, sustainable business model

Core Capabilities

- Instrumentation / Automation
- Deep analytical chemistry knowledge
- Novel detection strategies
- Expansion into other industries
- 3D Printing
- Continue to invest in 3D printing capabilities
- Customization and optimization
- Concept through to commercialization
- Analytical Testing \& Process Optimization
- Focus on DBP testing and analysis
- Water treatment process mapping and optimization
- Innovation

- New technology development

Analyzers for Water Utilities

Remember...Our Goal is to Make Hard Measurements Easy

- Product line built around DBP analysis
- Current SBIR Phase II project focused on developing lowcost analyzers to reach small to mid-sized water treatment plants (THM-Meter)
- UofM Partnership

An Intro to Disinfection By-Products (DBPs)

Changing Strategies toward Drinking Water Disinfection

Concentration of Disinfectant (mg / L)
(chemicals such as chlorine gas, sodium hypochlorite, calcium hypochlorite, chlorine dioxide, and ozone that are used to disinfect drinking water; increasing going from left to right)

Changing Strategies toward Drinking Water Disinfection

Concentration of Disinfection By-Products ($\mu \mathrm{g} / \mathrm{L}$)
(Chemicals such as chlorinated hydrocarbons including
Trihalomethanes and Haloacetic acids and bromate ion;
concentration increasing from bottom to top of axis)

Concentration of Disinfectant (mg / L)
(chemicals such as chlorine gas, sodium hypochlorite, calcium hypochlorite, chlorine dioxide, and ozone that are used to disinfect drinking water; increasing going from left to right)

Changing Strategies toward Drinking Water Disinfection

Concentration of Pathogenic Microorganisms

(concentration of organism increasing from bottom to top)

Concentration of Disinfection By-Products ($\mu \mathrm{g} / \mathrm{L}$)
(Chemicals such as chlorinated hydrocarbons including
Trihalomethanes and Haloacetic acids and bromate ion;
concentration increasing from bottom to top of axis)
(chemicals such as chlorine gas, sodium hypochlorite, calcium hypochlorite, chlorine dioxide, and ozone that are used to

Background on DBPs

- Government regulations with regard to DBPs have become stricter
- Rules require public water systems to comply with maximum contaminant levels (MCLs) and operational evaluation levels (OELs) for DBPs
- Sampling based on source water type, population, and number of treatment plants, or wells
- Many utilities struggle each year to meet these regulations - especially Trihalomethanes (THMs) and Haloacetic Acids (HAAs)

	Comprehensive Disinfectants and Disinfection Byproducts Rules (Stage 1 and Stage 2): Quick Reference Guide				
	Overview of the Rules				
	Tiles'	- Stage 1 Disinfectants and Disinfection Byproducts Rule (Stage 1 DBPR) 63 FR 69390, - December 16, 1998, Vol. 63, No. 241 - Stage 2 Disinfectants and Disinfection Byproducts Rule (Stage 2 DEPR) 71 FR 388, Janıary 4, 2006, Vol. 71, No. 2			
	Puppse	Improve public health protection by reducing exposure to disirfection byproducts. Some disinfectants and disirfection byproducts (DBPs) have been shown to cause cancer and reproductive effects in lab animais and suggested bladder cancer and reproductive effects in humans.			
		The DBPRs require public water systerns (PWSs) to: Comply with established maximum contaminant levels (MCLs) and operational evaluation levels (OELs) for DEPs, and maximum residtal disinfection levels (MRDLs) for dismiectant residuals. - Conduct an intibid evaluation of ther distributon system. In addition, PWSs using conventional fitration are required to remove specific percentages of organic material that may react to form DBPs through the implemertation of a treatment technique.			
		The DBPRs sppply to all sizes of commurity water systems (CWSSs) and nontransient noncommuntity 			
	This document provides a summary of federal drinking water requirements; to ensure full compliance, please consult the federal regulations at 40 CFR 141 and any approved state requirements.				
	Overview of Requirements This table shows how the requivements for the Stage 2 DBPR build on the existing requirements established in the Stage 1 DAPR For more information on changes in monitoring requirements, see Tabie 1 .				
			$\begin{aligned} & \text { Stage 1 } \\ & \text { DBPR } \\ & \hline \end{aligned}$	Stage 2 DBPR	For More Info:
	Coverage	All CWSs and NTNCWSs that add disirfectant other than UV light and TNCWSs that treat with chlorine dioxide.	\checkmark	\checkmark	
		Consecutrve systems that deliver water treated light.		\checkmark	
		MCL compliance is calculated using the running annual average (RAA) of al samples from al montoring locations across the system.	\checkmark		See Table 3.
		MCL compliance is calculated using the locational RAA (LRAA) for each mo location in the distribution system.		\checkmark	
	Contaminats				See Toble 2
	$\left\lvert\, \begin{aligned} & \text { Regulated } \\ & \text { Cocitarninant } \\ & \text { \& Disinfectants } \end{aligned}\right.$	Total Tintaiometanes (THMM)	\checkmark	\checkmark	
		S Haloacetic Adds (HMUS)	\checkmark	\checkmark	
		Promate	\checkmark	Regised under Stage 1 DePRR	
		Chorite	\checkmark	(Reglated under	
		Disintectants			
		Choineecticramines	\checkmark	Regustedunder Stage 1 DEPR	
		Choine doinde	\checkmark	Reguiated under Stage 1 DBPR	
				\checkmark	See Table 5.
	1. A rew andy tical method for bromate was approved with He				

FOUNDATION
I N S T R U M E N T S

FOUNDATION

What are DBPs and how do they form?

- The DBPs produced depend largely on which chemical disinfectant is used
- Chlorinated water -- (two common classes)
- Trihalomethanes (THM4)
- Haloacetic acids (HAA5)
- "Maximum Contaminant Levels" set by USEPA for finished water

Critical factors impacting THM formation:

THMs and HAAs

Water Research Foundation Project 2873

Emmert, G.L., Cao, G., Geme, G., Joshi, N. and Rahman, M. (2004) Methods for real-time measurement of THMs and HAAs in distribution systems. AWWARF and AWWA, Denver, CO.

Emmert, G.L., Brown, M.A., Simone, P.S., Geme, G and Cao, G. (2007) Methods for real-time measurement of THMs and HAAs in distribution systems Phase II. AWWARF and AWWA, Denver, CO.

Does how I collect my THM sample really matter?

The best analytical tools are essentially worthless if performed on a sample that was improperly collected or handled

- This is especially true for THMs
- They really don't want to be in water (THMs vs HAAs)
- Think about how you remove THMs?
- I have collected organics and residual chlorine in a bottle...what will happen?

Critical factors impacting THM sampling:

Sampling Procedure Outline

What are the Options for Daily
 Process Control Strategies for WTPs?

- In-House Laboratories
- Contract Labs
- On-Site process control options

"The only time I have problems with THMs and HAAs is in the summer."

Paraphrased from almost everyone I speak with in the industry.

"The only time I have problems with THMs and HAAs is in the summer."

Paraphrased from almost everyone I speak with in the industry.

	Winter		Summer
Total THMs	20 ppb	Assume 1st order kinetics	40 ppb
Temp ($\left.{ }^{\circ} \mathrm{F}\right)$	58		76
Temp $\left({ }^{\circ} \mathrm{C}\right)$	14.4	$10^{\circ} \mathrm{C}$ increase Doubles Rate	24.4

"The only time I have problems with THMs and HAAs is in the summer."

Paraphrased from almost everyone I speak with in the industry.

My thoughts on this -

- The best time to reduce DBPs (THMs and HAAs) is in the Winter, Spring and Fall quarters
- During these quarters, everything is working in your favor
- During the Summer, the "chemistry" is stacked against you - you are rowing against the stream

Should I really measure THMs all year?!?

	Winter	Spring Summer	Fall	LRAA	Goal		
THMs	20.0	50.0	\cdots	47.0	\cdots	80.0	ppb
HAA5	15.0	37.5		35.3		60.0	ppb

Should I really measure THMs all year?!?

	Winter	Spring	Summer	Fall	LRAA	Goal	
THMs	20.0	50.0	200.0	47.0	79.3	80.0	ppb
HAA5	15.0	37.5	150.0	35.3	59.4	60.0	ppb

Should I really measure THMs all year?!?

	Winter	Spring	Summer	Fall	LRAA	Goal
THMs	20.0	50.0	200.0	47.0	79.3	80.0 ppb
HAA5	15.0	37.5	150.0	35.3	59.4	60.0 ppb
Exceeds Limit!						

Purpose of establishing OELs:	To reduce peaks in DBP levels and exposure to high DBP levels.
OEL calculations:	Calculated for both TTHMs and HAA5s at each monitoring location using Stage 2 DBPR compliance monitoring results.
	OEL is determined by the sum of the two previous quarter's TTHM or HAA5 result plus twice the current quarter's TTHM or HAA5 result at that location, divided by four. OEL = (Q1 + Q2 + 2Q3) /4

Should I really measure THMs all year?!?

	Winter	Spring	Summer	Fall	LRAA	Goal	
THMs	20.0	50.0	200.0	47.0	79.3	80.0	ppb
HAA5	15.0	37.5	150.0	35.3	59.4	60.0	ppb

Let's do some basic monitoring and optimization...

	Winter	Spring Summer	Fall	LRAA	Goal		
THMs	20.0	35.0	\cdots	35.0	\cdots	80.0	ppb
HAA5	15.0	26.3		26.3		60.0	ppb

Let's do some basic monitoring and optimization...

	Winter	Spring	Summer	Fall	LRAA	Goal	
THMs	20.0	35.0	131.0	35.0	55.3	80.0	ppb
HAA5	15.0	26.3	98.3	26.3	41.4	60.0	ppb

Let's do some basic monitoring and optimization...

	Winter	Spring	Summer	Fall	LRAA	Goal	
THMs	20.0	35.0	131.0	35.0	55.3	80.0	ppb
HAA5	15.0	26.3	98.3	26.3	41.4	60.0	ppb

Below Operational Evaluation

Limit!

No additional Reporting Requirements or Plans

Hmmmmmmm...

But...you are gaming the system...
Nope. I'm following the law as it is written.
The USEPA does not want to set you up to fail. The regulations on THMs and HAAs can be met but it all starts with DAILY PROCESS CONTROL

THMs and HAAs should be monitored just like other parameters - pH, Alk, Hardness, Cl Dose etc.

Hmmmmmmm...

Operators need to understand the DAILY "diastole and systole" of their water treatment plant.

Overall Compliance in the LRAA does not depend on the Summer Quarter (when you have little control over events).

The foundation of Overall Compliance in the LRAA is laid in the other three quarters - when you are more in control

During the Winter, Spring and Fall, your mitigation strategies are at peak efficiency - more bang for the buck!

Need for an on-site THMs analyzer

- Allows for a real-time response
- Proactive intervention
- Control strategies optimized on the fly

THM-METER ${ }^{\text {TM }}$

Economical Total THM Analyzer

The THM-METER ${ }^{\text {TM }}$ analyzer provides an economical means to measure Total THM concentration at your plant or out in the distribution system

- Technology fills a void for low cost, easy-touse THM monitoring
- Enables small to medium sized utilities to bring in modern technology to aid in delivering safe drinking water to their customers
- Technology designed to reach the water treatment plants that need it the most!

THM-METER ${ }^{\text {TM }}$

Economical Total THM Analyzer

Analyzer Specifications:

Total THM Concentration: 10 to 200 ppb
RSD: $\pm 5 \mathrm{ppb}$
Run Time: <1 hour
Reagents: Reagent A + Reagent B + UHP Water
Size: 20 in $\times 12$ in $\times 11$ in ($/ \times w \times h$)
Weight: 29.9 lbs
Approximate Cost per Sample: ~\$5-7.50/sample
Sample Prep: Fill vial with water sample
Skill Level: No specialized skills required

The THM-Meter works by reacting the THMs in the sample with proprietary reagents that generate a fluorescing compound that is proportional to the Total THMs in the sample.

THM-METER ${ }^{\text {TM }}$ Method Comparison

The analyzer performance was compared with the GC-MS purge \& trap method and the THM-RR instrument to assess field readiness

- Samples were collected from multiple locations and different water sources (ground, well, spring)
- Goal was to compare performance across validated THM analysis methods to assess system performance of the THM-METER
- The average bias between the THM-METER and established methods:
- Purge \& Trap: 6.9 ppb
- THM-RR: 4.1 ppb

FOUNDATION

THM-METER ${ }^{\text {TM }}$ Method Comparison

The analyzer was compared in online mode side-by-side to the THM-RR instrument to further assess system reliability and performance

- Online sampling 3X daily over 6 weeks
- Sampled from same finished sampling adapter at same time points
- The average bias between the THM-METER and the THM-RR:
- THM-RR: 1.2 ppb

FOUNDATION

THM-RR: Trihalomethane Rapid Response System

Commercialized version of the THM-RR with the RR-AutoCal Autosampler

THM-RR: Fully automated sampling, data collection \& reporting

Quantification Range		
chloroform (CHCl_{3})	$0.06-60 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}(\mathrm{ppb})$	
bromodichloromethane (CHBrCl_{2})	$0.03-60 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}(\mathrm{ppb})$	
dibromochloromethane ($\mathrm{CHBr}_{2} \mathrm{Cl}$)	$0.03-60 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}(\mathrm{ppb})$	
bromoform (CHBr_{3})	$0.1-60 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}$ (ppb)	
Total THMs (TTHMs)	$0.12-240 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}(\mathrm{ppb})$	
Accuracy and Precision		
@ $20 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}(\mathrm{ppb})$		
	Mean \% Recovery	\%RSD
chloroform (CHCl_{3})	97	2
bromodichloromethane (CHBrCl_{2})	101	2
dibromochloromethane ($\mathrm{CHBr}_{2} \mathrm{Cl}$)	97	1
bromoform (CHBr_{3})	103	2
Total THMs (TTHMs)	99	1
@ $0.3 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}(\mathrm{ppb})$		
	Mean \% Recovery	\%RSD
chloroform (CHCl_{3})	85	2
bromodichloromethane (CHBrCl_{2})	81	2
dibromochloromethane ($\mathrm{CHBr}_{2} \mathrm{Cl}$)	77	1
bromoform (CHBr_{3})	87	5
Total THMs (TTHMs)	83	2

FOUNDATION

THM-RR Process Optimization - Lebanon, TN

Extended On-line Monitoring Data (Lebanon, TN WTP)

- On-line monitoring data from Sept. 2015 to Feb. 2020

HAA-RR ${ }^{\text {TM }}$

Rapid Response Benchtop HAA Analyzer
The rapid response benchtop HAA-RR ${ }^{\text {TM }}$ analyzer provides fast, reliable and accurate analysis of individual and total HAA concentrations.

- Automated Operation
- Easy to use, results in 80 minutes
- Optional auto sampler provides rapid unattended analysis for up to 12 samples
- Comprehensive data

HAA speciation data provided for HAA5 and HAA9

- Operational Optimization

Replaces reliance on external laboratories for performance control

- Enables near-real time tracking and response for
 HAA control

HAA-RR ${ }^{\text {TM }}$

Rapid Response Benchtop HAA Analyzer

The HAA-RR ${ }^{\text {TM }}$ system provides a means to collect on-site, near-real time HAA data to help utilities manage DBP levels

Potential Applications:

- Operators seeking to ensure cost-effective compliance with DBP regulations
- Utilities and engineers looking to undertake rapid evaluation of HAA treatment pilot systems, minimizing cost and time
- Utilities looking to undertake timely acceptance testing of a newly installed HAA
 treatment system

EZ-Titator ${ }^{T M}$

Affordable Automated Titrator \& Liquid Handling Devices

EZ-AutoPipet

- Minimize human error
- Automated separation of standards
- High accuracy \& precision
- Use preloaded or custom methods
- Touchscreen interface

EZ-AutoTitrator

- Easy Alkalinity, Hardness, and pH measurements
- Minimizes human error in titrant delivery/endpoint detection
- Easy-to-read and use touchscreen interface
- Adaptable to other Potentiometric and indicator based titration methods

EZ-Titator ${ }^{\text {TM }}$

Affordable Automated Titrator \& Liquid Handling Devices

Potentiometric

- pH-based Titration
- To the equivalence point
- Full scale Titration to identify endpoint

AND

Colorimetric Titrations

Automated Endpoint Detection

- Hardness of Water - A classical "Hard to See" endpoint
- Reduces error in titrant delivery/endpoint detection between operators
- Fully automated endpoint detection

Analytical Testing \& Consulting

Need THM/HAA data to better understand your disinfection byproduct levels?

- THM4, HAA5, HAA9
(EPA \& non-EPA methods)
- VOCs (Purge \& Trap)
- Chromatography (Liquid \& Gas)
- Spectrophotometry
- Ion Chromatography
- Wet Chemistry Techniques
- Jar Testing (drinking water)
- Custom Analysis

Other Projects and Opportunities

- Developing turn-key new product development support (concept through to commercialization) and additive manufacturing capabilities
- Lead analyzer to aid in the identification of lead service lines - goal is to develop a field deployable analyzer where you could test onsite
- Investigating analysis strategies for the determination of PFAS / PFOA as well as other emerging contaminants
- Seeking funding for automation of noninvasive cancer detection assay using selective biomarkers (partnership with UofM)
- Continue to research improved testing capabilities for disinfection byproducts in drinking water
- Working with the state to aid small utilities to improve DBP monitoring and compliance
- Looking for opportunities to work with other firms where we collaborate and/or develop new technologies to fill technology gaps

Contact Information

Any Questions?

Paul C. Brister, Ph.D.
Chief Executive Officer
pbrister@fih2o.com
(c) 850.766.4255

Gary L. Emmert, Ph.D.
Founder, Chief Scientific Officer gemmert@fih2o.com

Paul S. Simone, Ph.D.
Founder, Chief Technology Officer psimone@fih2o.com

BLANK

