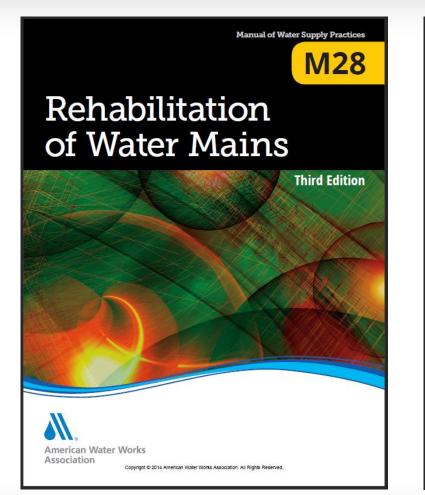

Trenchless Rehab & Replacement

Trenchless Solutions



Presentation Outline

- AWWA Trenchless Structural Classifications
- Conventional Sliplining Class IV
- Modified Sliplining Class III
- HDD Replacement Class IV
- Static Pipebursting Class IV

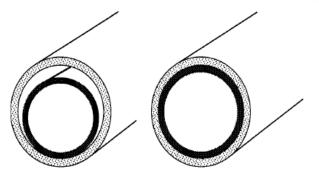
AWWA Rehabilitation Structural Classifications

AWWA Publications

Structural Classifications of Pressure Pipe Linings

 Suggested Protocol for

 Image: Classification


 Image: Classification

Dedicated to the World's Most Important Resource®

PRESSURE LINER CLASSIFICATIONS

Two Categories of Pressure Pipe Liners:

- Independent liner is designed for all applicable loads independent of the host pipe
- Interactive liner relies on radial support from host pipe to handle internal loads without failing

INDEPENDENT loose-fitting and close-fitting

TRENCHLESS METHOD BY CATEGORY & CLASSIFICATION

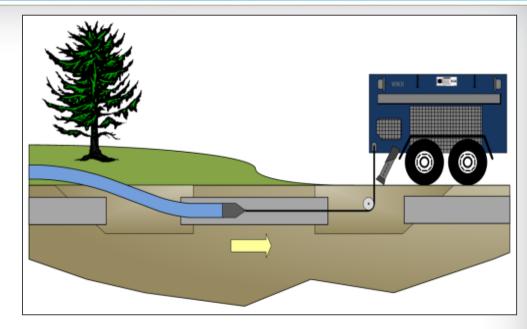
Industry Classification	Non-Structural	Semi-St	ructural	Fully Structural
AWWA Classification	Class I	Class II	Class III	Class IV
Trenchless Products	Cement Mortar Lining	CIPP	CIPP	CIPP
	Epoxy/ PU lining	Modified Epoxy Lining	Modified Sliplining	Modified Sliplining

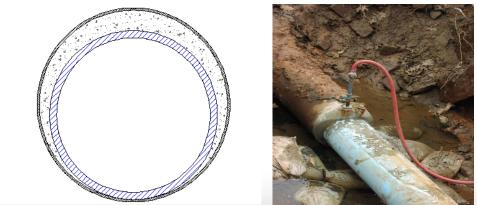
Trenchless Considerations vs. Open Cut

- Pipe Material Structural Condition of Existing Pipe
- Fittings, Valves & Off-Sets
- Hydraulic capacity requirements (=, <, >, etc.)
- Soil type (sand, clay, silt, rock, etc.)
- Depth of existing pipe
- Existing utilities and structures
- Sub-aqueous crossings
- Bridge mounted WMs
- Bypass Considerations (hydrant locations, length, size, road crossings)
- Pit or open cut requirements (water table, dewatering, etc.)
- Site Restrictions (footprint, pipe layout, disruption, etc.)
- Traffic Control
- Site Restoration

Pre-construction Investigation and Preparation

- Site Visit
- As-builts
- Plans
- Operational Data
- CCTV
- Pipe Cleaning
- Point repairs

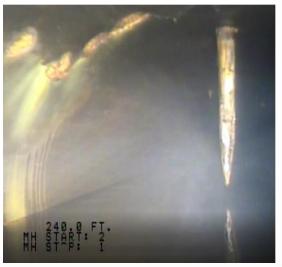

CONVENTIONAL SLIPLINING


CLASS IV Fully – Structural Solution

Independent Liner – New Pipe inside Existing

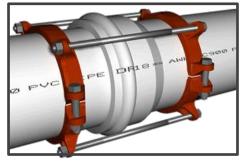
Sliplining

- Provides maximum flow with an independent fully structural solution
- Results in a smaller ID than the host pipe
- Improvement in internal friction often minimizes flow loss – "C" factor
- 2" of annular space
- Grouting of the annular space between the existing and new pipe is usually required



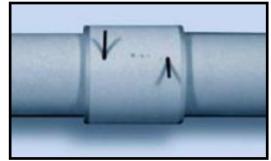
Constructability Considerations

Sliplining


- Video inspection of host pipe condition, deflections, vertical profiles and stranded appurtenances
- Ability to dig out connections before sliplining
- Layout area for fused pipe as well as entrance pit constraints possibility for "fuse & pull" or in pit fusion
- New carrier pipe material selection
- Pull proof piece verify alignment
- Connections

Cross Sectional Area & Deflection

12" C900 Restrained PVC


Barrel = 13.2" Bell = 16.75" Restraining Hardware = 19.45"

TerraBrute CR Barrel = 13.2" Bell = 16.36" DR 18

Bulldog Restraint Barrel = 13.2" Bell = 16.13" DR 18

Certa-Lok Barrel = 13.2" Bell = 15.83"

Fusible C900 PVC Pipe

Barrel and Fused Joint Have Consistent O.D. = 13.2"

Elkton, TN – Elk River Water Line Crossing Repairs

Sliplining

SOUTH GILES UTILITY DISTRICT

- Original Casing/Carrier = 6" B&S PVC inside 10" DI
- New Carrier pipe = 680 linear feet of 8" DR18 Fusible PVC
- US31 HWY Bridge
- Fuse & install 7 hrs
- Contractor Williamson Construction
- Engineer Goodwyn, Mills, and Cawood

8-inch DR 18 Fusible C-900[®] pipe inside 10-inch CL 350 ductile iron

Bell OD= 12.91 OD= 11.10"-ID= 10.40"-

OD= 9.05" ID= 7.98"

New pipe string installation

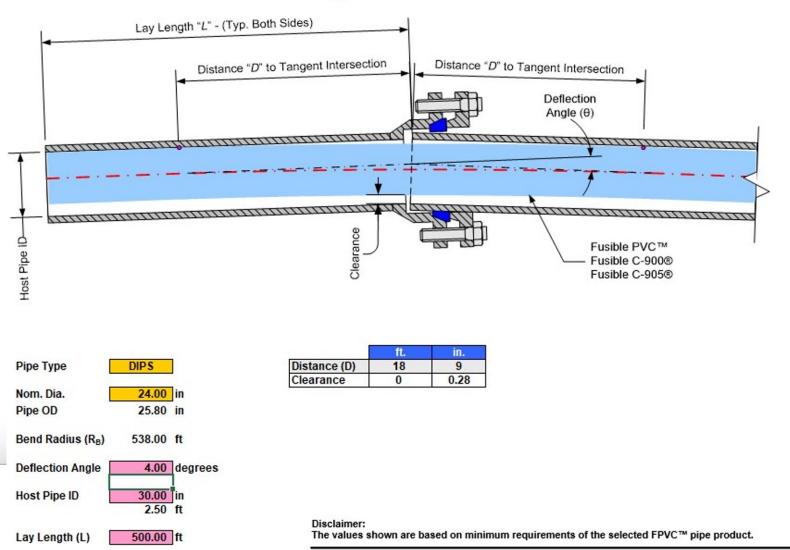
Pipe pull-in with pull rods

Fusible PVC® pipe in casing

Slipline

Metro Atlanta Slipline

Project:	Katie Kerr Rehab			
Location:	Decatur, GA			
Length:	2,250 LF			
Host Pipe:	30" Steel			
Pipe Size:	24" DR18 DIPS Fusible C-900® PVC pipe			
Pressure Test:	200 psi			
Install:	Static Pipe burst machine			



Dresser Coupling

Sliplining

La Brea Subarea GW Supply Project

Sliplining

City of Beverly Hills

- Sliplined inside 1950s 18" & 24" Concrete pipe
- 7,000-ft of 14" FPVC inside 18" on La Cienega
- 2,300-ft of 16" FPVC inside 24" on Le Doux Rd
- Engineer Hazen & Sawyer
- Contractor MNR Construction

Charleston, SC – Wappoo Road WM Slipline

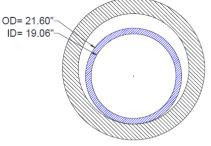
Sliplining

Charleston Water System **Water System**

- 4,940' linear feet of 8" DR18 Fusible PVC
- Sliplined inside 12" Cast Iron ٠
- **Engineer Arcadis**
- **Contractor Carroll Enterprises**

Charleston

Slipline – Rehab 30" Transmission WM


Sliplining

±0430.4_1

Fairpoint Regional Utility System Navarre, FL

Google earth

- 2,800' 30" DR9 HDPE Water Transmission Main – Installed via HDD in 2004
- 2014 develop leak -Video Inspection revealed a gradual, spiraling, longitudinal crack - ~ 400' from south end @ 55' depth
- HDPE line was Sliplined with 2,800' of 20" DR18 Fusible C-900 PVC
- HDD Pull-in method
- Completed & Pressure Test Feb '15

20" DR 18 Fusible C-905® Inside Exist. 30" DR 9 HDPE

MODIFIED SLIPLINING

CLASS III Semi – Structural Solution

Flexible Fabric Reinforced Pipe - Primus

External Layer

- Abrasion-resistant PE sheath
- Protection of the fabric during insertion

Internal Layer

- Fluid specific
- Based on PE, TPU
- 15 potable water certifications (AS/NZS 4020:2005/NSF61)

Kevlar®

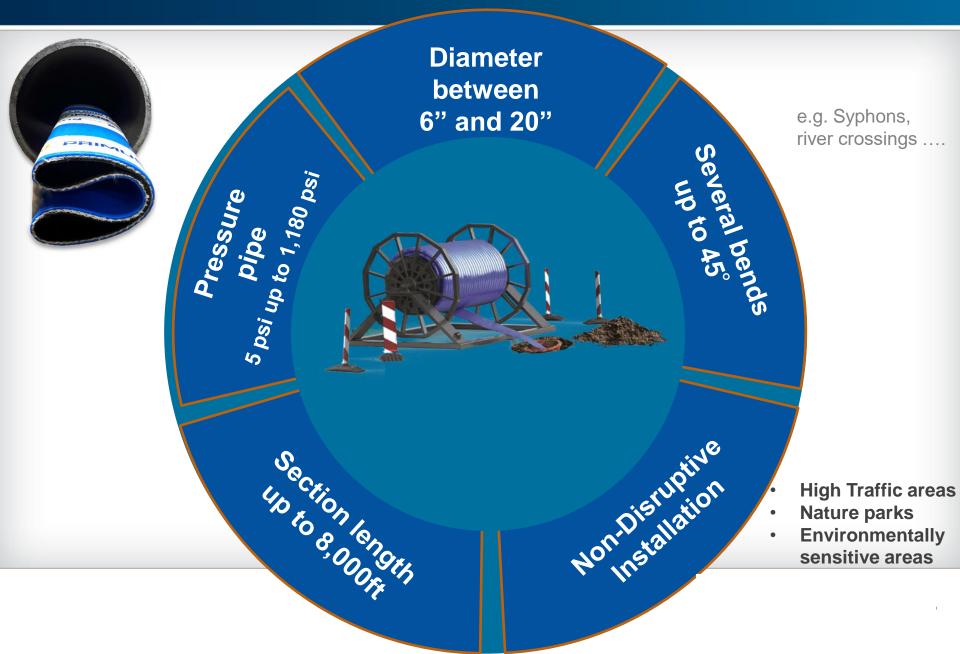
•Seamless, woven aramid fabric

•Accommodates the operating

pressure independently from host pipe

Kevlar

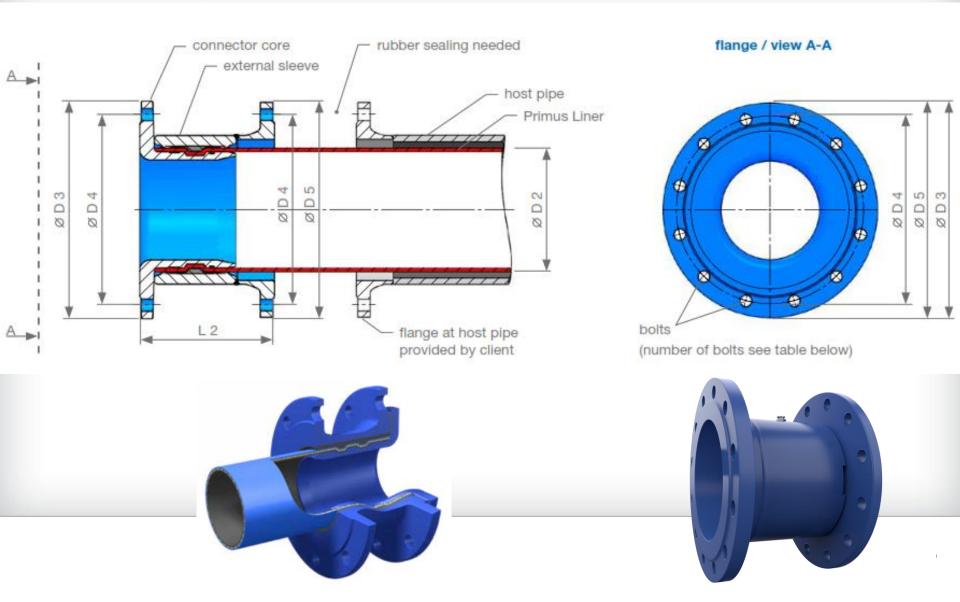
•Wall thickness of 6 mm


•Liner is not glued to host pipe

(no steaming or curing

processes)

Installed with annulus space


Technical Envelope

Installation Process

End Connections

HDD River Crossing Rehabiliation - FFRP

Project Description

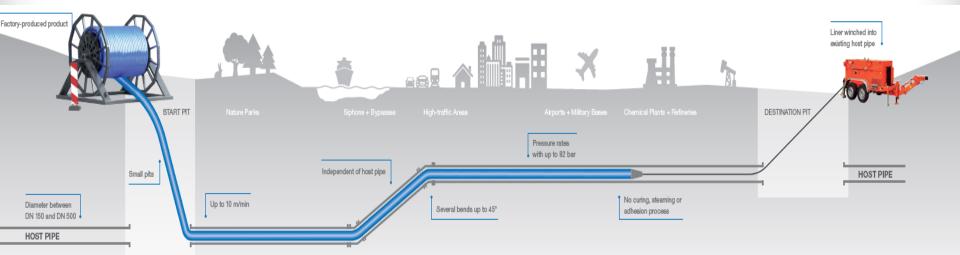
- Pipe Material: 16" HDPE (HDD)
 - Two recent isolated failure locations @ fusion joints
- Length: ~1,100 LF
- Pressure: 80 psi
- Type: Potable water
- Adjacent to high-speed roadway

Bridge Water Main Rehabilitation - FFRP

Ductile Iron Bridge Crossing

Project Description

- Existing Pipe Material: 12" DI
 - Hung from bridge
- Length: ~1,400 LF
 - 45 minute pull back (~30 ft/min)
- Pressure: 80+ psi
- Type: Potable water



Why use FFRP "modified sliplining" system for Class III?

- Minimal equipment / Personnel
- Navigate Multiple bends up to 45 degrees
- Fast install (33 ft/min or 1900 LF/hr)

- Small footprint
- Length of pulls
 >8000 LF
- Higher pressures
 and Low pressures
- No cure time liner cure time
- Emergency Rehab

Horizontal Directional Drilling

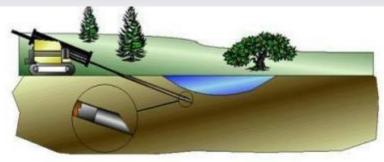
CLASS IV Fully – Structural Solution

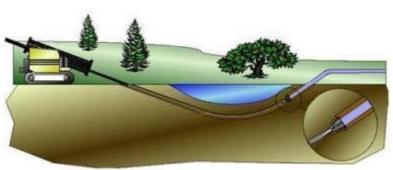
Where is Horizontal Directional Drilling utilized?

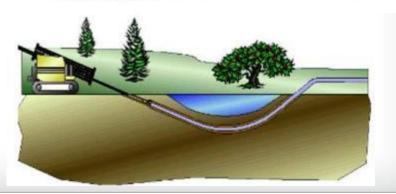
- Water, Wastewater, Casing, Gas, Comm., Conduit, etc.
 - Waterbody crossings, outfalls and shore approaches
 - Interstate, Highway, railroad crossings, county roads, driveway/parking lot crossings
 - Conflicting utilities gas lines or storm drains
 - Congested areas where open cut is too expensive
 - relocation/replacement

Horizontal Directional Drilling

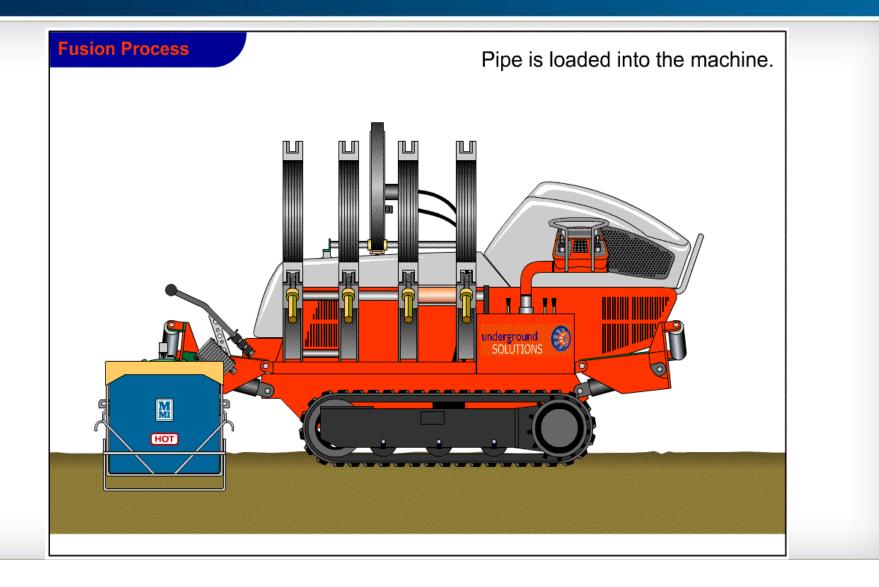
Project Considerations


- Bore Alignment and Profile
 - Bend radius of drill stem and product pipe
 - Tracking / Bore path
 - **Depth-** critical buckling pressure
- Geotechnical information
- Insertion trench
- Pipe fusion and laydown area
- Drill Mud
- Pull Force
 - Water ballasting and rollers to reduce drag
- Reconnection
- Pressure test





Basics of Horizontal Directional Drilling


- Guided pilot hole is drilled along a bore path
- Drilling fluids are injected into the hole to stabilize and lubricate
- Back reamer is used to enlarge the pilot hole
 - Multiple passes are required to accommodate pipe OD
 - Drilled bore hole is typically enlarged to 1.5 x OD of new pipe
- Product pipe is pulled through the bore hole

Fusion Process

PVC and HDPE Pipe Materials Properties

Property	Specification	PVC	HDPE 3608 ¹	HDPE 4710 ²
Tensile Strength psi	ASTM D638	7,000	3,000	≤3,500
Density (Specific Gravity)	ASTM D1505	1.40	0.94	0.95
Hydrostatic Design Basis At 73° F, psi	ASTM D2837	4,000	1,600	1,600
Modulus of Elasticity psi (Short Term)	ASTM D638	400,000	110,000 ³	130,000 ³
Hardness (Rockwell R)	ASTM D785	117	52	NA
Coefficient of Linear Expansion In./In. deg F	ASTM D696	0.3 x 10⁻⁴ .36"/ 100'/ 10°F	1.2 x 10⁻⁴ 1.44"/ 100'/ 10°F	1.2 x 10⁻⁴ 1.44"/ 100'/ 10°F
Water Disinfectant Induced Oxidation		Highly Resistant	Low Resistance	Low Resistance
Hydrocarbon Permeation		Highly Resistant	Highly Permeable	Highly Permeable

1. HDPE 3608 also referred to as PE80

2. HDPE 4710 also referred to as PE100

3. PPI – PE Handbook – Long Term Modulus of Elasticity is 28,200 psi

Trenchless Pipe Material Options

- Strength & Stiffness
- **Metal & Metal Reinforced Pipe** Highest Tensile Strength, Limited Flexibility, Requires Corrosion Protection, Not Permeable (gaskets are permeable). Up to 18,000' pull lengths.
- Fusible PVC® Pipe Stronger than HDPE, More Flexible than Metal, No Galvanic Corrosion, No Water Disinfectant Oxidation, Permeation Resistant, Compatible with DI & Steel Pipe. Up to 7,600' pull lengths.
- Restrained Joint PVC Pipe Limited Deflection, No Water Disinfectant Oxidation, Permeation Resistant, Compatible with DI & Steel Pipe. Segmented assembly eliminates pipe layout challenges. Up to 2,000' pull lengths.
- Fusible HDPE Pipe Most Flexible, Lowest Tensile Strength & Stiffness, No Galvanic Corrosion, Requires Protection from Disinfectant Oxidation, Lowest Resistance to Hydrocarbon Permeation, Requires Transition Connections with DI & Steel Pipe. Up to 4,000' pull lengths.

Flexibility

Eagleville, TN – River Crossings HDD

CONSOLIDATED UTILITY DISTRICT

Rutherford County, Tennessee

Horizontal Directional Drilling

Sliplining

- Harpeth River Crossing HDD
 - 320 linear feet of 12" DR25 blue Fusible PVC casing HDD
 - 320 linear feet of 8" DR18 blue Fusible PVC carrier Slipline
- <u>Stones River HDD solid rock soils</u>
 - 600 linear feet of 12" DR25 blue Fusible PVC casing HDD
 - 600 linear feet of 8" DR18 blue Fusible PVC carrier Slipline

Recent USDA Projects

AL Water System Improvements

Clay County

- ~12000 LF of 6" & 8" Fusible C900 PVC
- >52 Horizontal Directional Drills for creeks, wetlands and roads

Perry County

- ~16,000 LF of 6-12" Fusible C900 PVC
- >59 Horizontal Directional Drills for creeks, wetlands and roads

Wilcox County

- ~15,000 LF of 6-8" Fusible C900 PVC
- >60 Horizontal Directional Drills for creeks, wetlands and roads

Russell County

- ~5000 LF of 10" & 12" Fusible C900 PVC
- >12 Horizontal Directional Drills for creeks, wetlands and roads

Record Breaking HDD with 24" DR18 Fusible PVC[®] Pipe

Horizontal Directional Drilling

Caloosahatchee Connect RCW Transmission City of Cape Coral

- 7,630' HDD of 24" DR18 Fusible PVC pipe
- 12MGD RCW from City of Ft. Myers to Cape Coral

Engineer – Stantec/Cardno, Bennett Trenchless GC – Amici Engineering Contractors HDD – Centerline Directional

Kiawah River HDD – South Carolina

Horizontal Directional Drilling

Kiawah Island Utility

- 7,000 linear feet of 16" DR14 Fusible PVC
- 85' deep
- 1 intermediate 4600' & 2400' segments
- Design Engineer Thomas & Hutton Contractor - Mears Group, Houston, TX

Johns Island, South Carolina

Horizontal Directional Drilling

St. Johns Water Company

- 20,000' 24" DR18 & DR25 Fusible C900 PVC
- 4,440' in single HDD Stono River Crossing
- Wetlands, Marshland, Grand Live Oak Trees
- River Road
- Contractor RH Moore

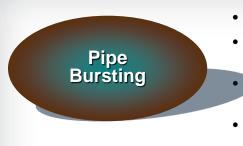
Panama City Beach, FL – 1 mile+ HDD

Horizontal Directional Drilling

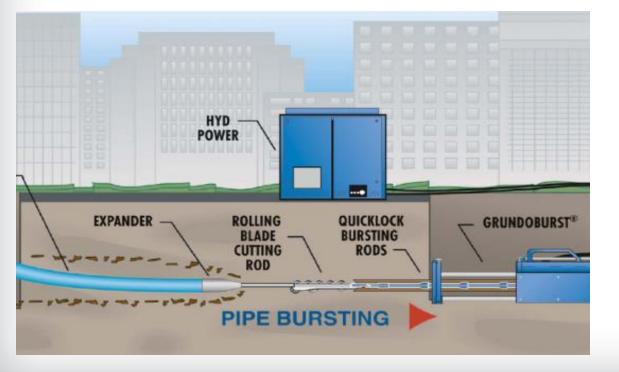
Bay County - Hathaway Bridge

- 5400' of 24" DR18 Fusible C-900 PVC
- Engineer Dewberry
- GC Marshall Brothers
- •
- Inspector MM
- HDD Sub Contractor Mears Group

5,400 LF 24" DR 18 Fusible C900 HDD Crossing


Pipe Ballast Setup

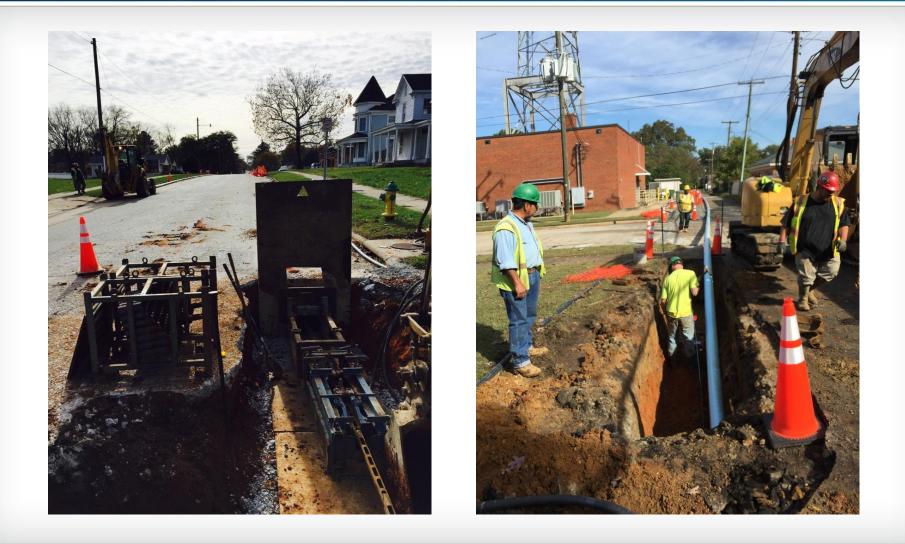
PIPE BURSTING


CLASS IV Fully – Structural Solution

Pipe Replacement by Static Pipebursting

- Static Hydraulic Method is used
- Burst head is pulled through existing line fracturing or cutting the pipe
- Fractured or split pipe is pushed into the surrounding soil
- New pipe is pulled in immediately behind the burst head

- Typically done in 300 500' increments (~1 hour pull-back)
- Utilizes existing alignment less engineering cost to locate adjacent utilities
- Result in same or larger I.D. (upsizing) as old pipe


Pipebursting Process

- Pre TV Inspection
- Tool Selection
- Pit Locations
- Fittings, Valves, Off-Sets
- Service Locations
- Pipe Fusing
- Pipebursting/Pipe Installation
- Service Reconnections
- Restoration
- Post TV Inspection

Pipe Burst Host Pipe Materials

- Fracturable Pipes include cast iron (CI), clay (VCP), concrete (CP), asbestos cement (AC), RCP, and others.
- Non-Fracturable Pipes include ductile iron (DI), steel, galvanized iron, HDPE, PVC, and others.
 - Replaced by pipe splitting
- Generally not good candidates- Corrugated metal, corrugated plastic pipes, and brick

Static Machine Pit and Pipe Insertion

Tooling: Cutters, Linkage, and Expander

Insertion

Examples of Programmatic Pipe Bursting Water Mains Across the Country

End-users from East to West see advantages of pipe bursting programs

Billings, MT (pop. 110,000) Lee's Summit, MO (pop. 91,000)

- Started in 2008
- Over 27,000 LF installed
- City does fusing and bursting

- Started in 2009
- Over 118,000 LF installed
- City bids specific projects

Monroe, NC (pop. 35,000)

- Started in 2014
- Over 50,000 LF installed
- City installs pipe

Denver, CO (CMW pop. 100,000)

- Started in 2010
- Over 230,000 LF installed
- City does fusing and bursting

Greensboro, NC (pop. 294,000)

- Started in 2009
- Over 72,000 LF installed
- City bids annual contracts

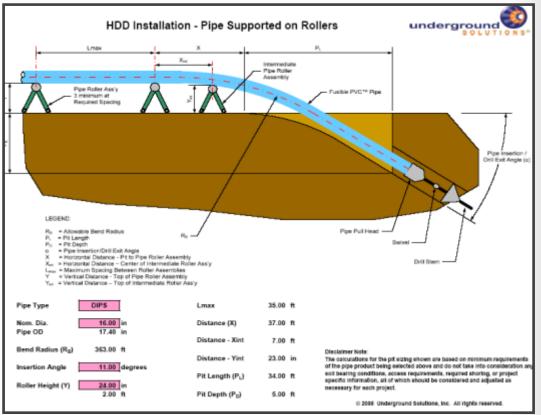
Water Distribution Replacement – Miller Street Water Main

Client: City of Monroe, NC

Existing WM:

Pipe Bursting

- 10inch and 8inch existing Cast Iron
- **Replacement Material:**
- 1,485 LF: 10-inch Fusible C-900 PVC pipe
- 225 LF: 8-inch Fusible C-900 PVC pipe
- **Contractor KRG Utility**


Ductile Iron Water Main Pipe Burst

Technical Support

Project assistance includes:

- Seasoned industry construction managers to help "kick-off" projects with owners and contractors
- Calculation tools for planning HDD, Sliplining, Pipe Bursting and Open-Cut projects
- Handling instructions on "Quick Cards" for contractors in the field
- Project management and direct source of project information

QUESTIONS

Nick Dross, UGS Manager NC SC TN Ph: 704-619-0522 ndross@azuria.com

